Journal article

Full citation: 

Understanding the distribution and geometry of reservoir geobodies is crucial for net-to-gross estimates and to model subsurface flow. This article focuses on the process of dolomitization and resulting geometry of diagenetic geobodies in an outcrop of Jurassic host rocks from northern Oman. Field and petrographic data show that a first phase of stratabound dolomite is crosscut by a second phase of fault-related dolomite. The stratabound dolomite geobodies are laterally continuous for at least several hundreds of meters (∼1000 ft) and probably regionally and are one-half meter (1.6 ft) thick. Based on petrography and geochemistry, a process of seepage reflux of mesosaline or hypersaline fluids during the early stages of burial diagenesis is proposed for the formation of the stratabound dolomite. In contrast, the fault-related dolomite geobodies are trending along a fault that can be followed for at least 100 m (328 ft) and vary in width from a few tens of centimeters to as much as 10m(∼1–33 ft). Petrography, geochemistry, and high homogenization temperature of fluid inclusions all point to the formation of the dolomite along a normal fault under deep burial conditions during the Middle to Late Cretaceous. The high 87Sr/86Sr ratio in the dolomite and the high salinity measured in fluid inclusions indicate that the dolomitizing fluids are deep basinal brines that interacted with crystalline basement. The dolomitization styles have an impact on the dimension, geobodies, texture, and geochemistry of the different dolomite, and a modified classification scheme (compared to the one from Jung and Aigner, 2012) is proposed to incorporate diagenetic geobodies in future reservoir modeling.

Publication date: 
Monday, July 1, 2013